Metamath Proof Explorer


Theorem xrltletr

Description: Transitive law for ordering on extended reals. (Contributed by NM, 19-Jan-2006)

Ref Expression
Assertion xrltletr A * B * C * A < B B C A < C

Proof

Step Hyp Ref Expression
1 xrleloe B * C * B C B < C B = C
2 1 3adant1 A * B * C * B C B < C B = C
3 xrlttr A * B * C * A < B B < C A < C
4 3 expcomd A * B * C * B < C A < B A < C
5 breq2 B = C A < B A < C
6 5 biimpd B = C A < B A < C
7 6 a1i A * B * C * B = C A < B A < C
8 4 7 jaod A * B * C * B < C B = C A < B A < C
9 2 8 sylbid A * B * C * B C A < B A < C
10 9 impcomd A * B * C * A < B B C A < C