Metamath Proof Explorer


Theorem xrltnled

Description: 'Less than' in terms of 'less than or equal to'. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Hypotheses xrltnled.1 φ A *
xrltnled.2 φ B *
Assertion xrltnled φ A < B ¬ B A

Proof

Step Hyp Ref Expression
1 xrltnled.1 φ A *
2 xrltnled.2 φ B *
3 xrltnle A * B * A < B ¬ B A
4 1 2 3 syl2anc φ A < B ¬ B A