Metamath Proof Explorer


Theorem xrltnr

Description: The extended real 'less than' is irreflexive. (Contributed by NM, 14-Oct-2005)

Ref Expression
Assertion xrltnr A * ¬ A < A

Proof

Step Hyp Ref Expression
1 elxr A * A A = +∞ A = −∞
2 ltnr A ¬ A < A
3 pnfnre +∞
4 3 neli ¬ +∞
5 4 intnan ¬ +∞ +∞
6 5 intnanr ¬ +∞ +∞ +∞ < +∞
7 pnfnemnf +∞ −∞
8 7 neii ¬ +∞ = −∞
9 8 intnanr ¬ +∞ = −∞ +∞ = +∞
10 6 9 pm3.2ni ¬ +∞ +∞ +∞ < +∞ +∞ = −∞ +∞ = +∞
11 4 intnanr ¬ +∞ +∞ = +∞
12 4 intnan ¬ +∞ = −∞ +∞
13 11 12 pm3.2ni ¬ +∞ +∞ = +∞ +∞ = −∞ +∞
14 10 13 pm3.2ni ¬ +∞ +∞ +∞ < +∞ +∞ = −∞ +∞ = +∞ +∞ +∞ = +∞ +∞ = −∞ +∞
15 pnfxr +∞ *
16 ltxr +∞ * +∞ * +∞ < +∞ +∞ +∞ +∞ < +∞ +∞ = −∞ +∞ = +∞ +∞ +∞ = +∞ +∞ = −∞ +∞
17 15 15 16 mp2an +∞ < +∞ +∞ +∞ +∞ < +∞ +∞ = −∞ +∞ = +∞ +∞ +∞ = +∞ +∞ = −∞ +∞
18 14 17 mtbir ¬ +∞ < +∞
19 breq12 A = +∞ A = +∞ A < A +∞ < +∞
20 19 anidms A = +∞ A < A +∞ < +∞
21 18 20 mtbiri A = +∞ ¬ A < A
22 mnfnre −∞
23 22 neli ¬ −∞
24 23 intnan ¬ −∞ −∞
25 24 intnanr ¬ −∞ −∞ −∞ < −∞
26 7 nesymi ¬ −∞ = +∞
27 26 intnan ¬ −∞ = −∞ −∞ = +∞
28 25 27 pm3.2ni ¬ −∞ −∞ −∞ < −∞ −∞ = −∞ −∞ = +∞
29 23 intnanr ¬ −∞ −∞ = +∞
30 23 intnan ¬ −∞ = −∞ −∞
31 29 30 pm3.2ni ¬ −∞ −∞ = +∞ −∞ = −∞ −∞
32 28 31 pm3.2ni ¬ −∞ −∞ −∞ < −∞ −∞ = −∞ −∞ = +∞ −∞ −∞ = +∞ −∞ = −∞ −∞
33 mnfxr −∞ *
34 ltxr −∞ * −∞ * −∞ < −∞ −∞ −∞ −∞ < −∞ −∞ = −∞ −∞ = +∞ −∞ −∞ = +∞ −∞ = −∞ −∞
35 33 33 34 mp2an −∞ < −∞ −∞ −∞ −∞ < −∞ −∞ = −∞ −∞ = +∞ −∞ −∞ = +∞ −∞ = −∞ −∞
36 32 35 mtbir ¬ −∞ < −∞
37 breq12 A = −∞ A = −∞ A < A −∞ < −∞
38 37 anidms A = −∞ A < A −∞ < −∞
39 36 38 mtbiri A = −∞ ¬ A < A
40 2 21 39 3jaoi A A = +∞ A = −∞ ¬ A < A
41 1 40 sylbi A * ¬ A < A