Metamath Proof Explorer


Theorem xrltnsym

Description: Ordering on the extended reals is not symmetric. (Contributed by NM, 15-Oct-2005)

Ref Expression
Assertion xrltnsym A * B * A < B ¬ B < A

Proof

Step Hyp Ref Expression
1 elxr A * A A = +∞ A = −∞
2 elxr B * B B = +∞ B = −∞
3 ltnsym A B A < B ¬ B < A
4 rexr A A *
5 pnfnlt A * ¬ +∞ < A
6 4 5 syl A ¬ +∞ < A
7 6 adantr A B = +∞ ¬ +∞ < A
8 breq1 B = +∞ B < A +∞ < A
9 8 adantl A B = +∞ B < A +∞ < A
10 7 9 mtbird A B = +∞ ¬ B < A
11 10 a1d A B = +∞ A < B ¬ B < A
12 nltmnf A * ¬ A < −∞
13 4 12 syl A ¬ A < −∞
14 13 adantr A B = −∞ ¬ A < −∞
15 breq2 B = −∞ A < B A < −∞
16 15 adantl A B = −∞ A < B A < −∞
17 14 16 mtbird A B = −∞ ¬ A < B
18 17 pm2.21d A B = −∞ A < B ¬ B < A
19 3 11 18 3jaodan A B B = +∞ B = −∞ A < B ¬ B < A
20 pnfnlt B * ¬ +∞ < B
21 20 adantl A = +∞ B * ¬ +∞ < B
22 breq1 A = +∞ A < B +∞ < B
23 22 adantr A = +∞ B * A < B +∞ < B
24 21 23 mtbird A = +∞ B * ¬ A < B
25 24 pm2.21d A = +∞ B * A < B ¬ B < A
26 2 25 sylan2br A = +∞ B B = +∞ B = −∞ A < B ¬ B < A
27 rexr B B *
28 nltmnf B * ¬ B < −∞
29 27 28 syl B ¬ B < −∞
30 29 adantl A = −∞ B ¬ B < −∞
31 breq2 A = −∞ B < A B < −∞
32 31 adantr A = −∞ B B < A B < −∞
33 30 32 mtbird A = −∞ B ¬ B < A
34 33 a1d A = −∞ B A < B ¬ B < A
35 mnfxr −∞ *
36 pnfnlt −∞ * ¬ +∞ < −∞
37 35 36 ax-mp ¬ +∞ < −∞
38 breq12 B = +∞ A = −∞ B < A +∞ < −∞
39 37 38 mtbiri B = +∞ A = −∞ ¬ B < A
40 39 ancoms A = −∞ B = +∞ ¬ B < A
41 40 a1d A = −∞ B = +∞ A < B ¬ B < A
42 xrltnr −∞ * ¬ −∞ < −∞
43 35 42 ax-mp ¬ −∞ < −∞
44 breq12 A = −∞ B = −∞ A < B −∞ < −∞
45 43 44 mtbiri A = −∞ B = −∞ ¬ A < B
46 45 pm2.21d A = −∞ B = −∞ A < B ¬ B < A
47 34 41 46 3jaodan A = −∞ B B = +∞ B = −∞ A < B ¬ B < A
48 19 26 47 3jaoian A A = +∞ A = −∞ B B = +∞ B = −∞ A < B ¬ B < A
49 1 2 48 syl2anb A * B * A < B ¬ B < A