Metamath Proof Explorer


Theorem xrltnsym2

Description: 'Less than' is antisymmetric and irreflexive for extended reals. (Contributed by NM, 6-Feb-2007)

Ref Expression
Assertion xrltnsym2 A * B * ¬ A < B B < A

Proof

Step Hyp Ref Expression
1 xrltnsym A * B * A < B ¬ B < A
2 imnan A < B ¬ B < A ¬ A < B B < A
3 1 2 sylib A * B * ¬ A < B B < A