Metamath Proof Explorer


Theorem xrlttrd

Description: Transitive law for ordering on extended reals. (Contributed by Mario Carneiro, 23-Aug-2015)

Ref Expression
Hypotheses xrlttrd.1 φ A *
xrlttrd.2 φ B *
xrlttrd.3 φ C *
xrlttrd.4 φ A < B
xrlttrd.5 φ B < C
Assertion xrlttrd φ A < C

Proof

Step Hyp Ref Expression
1 xrlttrd.1 φ A *
2 xrlttrd.2 φ B *
3 xrlttrd.3 φ C *
4 xrlttrd.4 φ A < B
5 xrlttrd.5 φ B < C
6 xrlttr A * B * C * A < B B < C A < C
7 1 2 3 6 syl3anc φ A < B B < C A < C
8 4 5 7 mp2and φ A < C