Metamath Proof Explorer
Description: Transitive law for ordering on extended reals. (Contributed by Mario
Carneiro, 23-Aug-2015)
|
|
Ref |
Expression |
|
Hypotheses |
xrlttrd.1 |
|
|
|
xrlttrd.2 |
|
|
|
xrlttrd.3 |
|
|
|
xrlttrd.4 |
|
|
|
xrlttrd.5 |
|
|
Assertion |
xrlttrd |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
xrlttrd.1 |
|
2 |
|
xrlttrd.2 |
|
3 |
|
xrlttrd.3 |
|
4 |
|
xrlttrd.4 |
|
5 |
|
xrlttrd.5 |
|
6 |
|
xrlttr |
|
7 |
1 2 3 6
|
syl3anc |
|
8 |
4 5 7
|
mp2and |
|