Metamath Proof Explorer


Theorem xrlttri

Description: Ordering on the extended reals satisfies strict trichotomy. New proofs should generally use this instead of ax-pre-lttri or axlttri . (Contributed by NM, 14-Oct-2005)

Ref Expression
Assertion xrlttri A * B * A < B ¬ A = B B < A

Proof

Step Hyp Ref Expression
1 xrltnr A * ¬ A < A
2 1 adantr A * A = B ¬ A < A
3 breq2 A = B A < A A < B
4 3 adantl A * A = B A < A A < B
5 2 4 mtbid A * A = B ¬ A < B
6 5 ex A * A = B ¬ A < B
7 6 adantr A * B * A = B ¬ A < B
8 xrltnsym B * A * B < A ¬ A < B
9 8 ancoms A * B * B < A ¬ A < B
10 7 9 jaod A * B * A = B B < A ¬ A < B
11 elxr A * A A = +∞ A = −∞
12 elxr B * B B = +∞ B = −∞
13 axlttri A B A < B ¬ A = B B < A
14 13 biimprd A B ¬ A = B B < A A < B
15 14 con1d A B ¬ A < B A = B B < A
16 ltpnf A A < +∞
17 16 adantr A B = +∞ A < +∞
18 breq2 B = +∞ A < B A < +∞
19 18 adantl A B = +∞ A < B A < +∞
20 17 19 mpbird A B = +∞ A < B
21 20 pm2.24d A B = +∞ ¬ A < B A = B B < A
22 mnflt A −∞ < A
23 22 adantr A B = −∞ −∞ < A
24 breq1 B = −∞ B < A −∞ < A
25 24 adantl A B = −∞ B < A −∞ < A
26 23 25 mpbird A B = −∞ B < A
27 26 olcd A B = −∞ A = B B < A
28 27 a1d A B = −∞ ¬ A < B A = B B < A
29 15 21 28 3jaodan A B B = +∞ B = −∞ ¬ A < B A = B B < A
30 ltpnf B B < +∞
31 30 adantl A = +∞ B B < +∞
32 breq2 A = +∞ B < A B < +∞
33 32 adantr A = +∞ B B < A B < +∞
34 31 33 mpbird A = +∞ B B < A
35 34 olcd A = +∞ B A = B B < A
36 35 a1d A = +∞ B ¬ A < B A = B B < A
37 eqtr3 A = +∞ B = +∞ A = B
38 37 orcd A = +∞ B = +∞ A = B B < A
39 38 a1d A = +∞ B = +∞ ¬ A < B A = B B < A
40 mnfltpnf −∞ < +∞
41 breq12 B = −∞ A = +∞ B < A −∞ < +∞
42 40 41 mpbiri B = −∞ A = +∞ B < A
43 42 ancoms A = +∞ B = −∞ B < A
44 43 olcd A = +∞ B = −∞ A = B B < A
45 44 a1d A = +∞ B = −∞ ¬ A < B A = B B < A
46 36 39 45 3jaodan A = +∞ B B = +∞ B = −∞ ¬ A < B A = B B < A
47 mnflt B −∞ < B
48 47 adantl A = −∞ B −∞ < B
49 breq1 A = −∞ A < B −∞ < B
50 49 adantr A = −∞ B A < B −∞ < B
51 48 50 mpbird A = −∞ B A < B
52 51 pm2.24d A = −∞ B ¬ A < B A = B B < A
53 breq12 A = −∞ B = +∞ A < B −∞ < +∞
54 40 53 mpbiri A = −∞ B = +∞ A < B
55 54 pm2.24d A = −∞ B = +∞ ¬ A < B A = B B < A
56 eqtr3 A = −∞ B = −∞ A = B
57 56 orcd A = −∞ B = −∞ A = B B < A
58 57 a1d A = −∞ B = −∞ ¬ A < B A = B B < A
59 52 55 58 3jaodan A = −∞ B B = +∞ B = −∞ ¬ A < B A = B B < A
60 29 46 59 3jaoian A A = +∞ A = −∞ B B = +∞ B = −∞ ¬ A < B A = B B < A
61 11 12 60 syl2anb A * B * ¬ A < B A = B B < A
62 10 61 impbid A * B * A = B B < A ¬ A < B
63 62 con2bid A * B * A < B ¬ A = B B < A