Database
REAL AND COMPLEX NUMBERS
Order sets
Infinity and the extended real number system (cont.)
xrlttri2
Next ⟩
xrlttri3
Metamath Proof Explorer
Ascii
Unicode
Theorem
xrlttri2
Description:
Trichotomy law for 'less than' for extended reals.
(Contributed by
NM
, 10-Dec-2007)
Ref
Expression
Assertion
xrlttri2
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
→
A
≠
B
↔
A
<
B
∨
B
<
A
Proof
Step
Hyp
Ref
Expression
1
xrltso
⊢
<
Or
ℝ
*
2
sotrieq
⊢
<
Or
ℝ
*
∧
A
∈
ℝ
*
∧
B
∈
ℝ
*
→
A
=
B
↔
¬
A
<
B
∨
B
<
A
3
1
2
mpan
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
→
A
=
B
↔
¬
A
<
B
∨
B
<
A
4
3
bicomd
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
→
¬
A
<
B
∨
B
<
A
↔
A
=
B
5
4
necon1abid
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
→
A
≠
B
↔
A
<
B
∨
B
<
A