Metamath Proof Explorer


Theorem xrlttri2

Description: Trichotomy law for 'less than' for extended reals. (Contributed by NM, 10-Dec-2007)

Ref Expression
Assertion xrlttri2 A * B * A B A < B B < A

Proof

Step Hyp Ref Expression
1 xrltso < Or *
2 sotrieq < Or * A * B * A = B ¬ A < B B < A
3 1 2 mpan A * B * A = B ¬ A < B B < A
4 3 bicomd A * B * ¬ A < B B < A A = B
5 4 necon1abid A * B * A B A < B B < A