Metamath Proof Explorer


Theorem xrlttri3

Description: Trichotomy law for 'less than' for extended reals. (Contributed by NM, 9-Feb-2006)

Ref Expression
Assertion xrlttri3 A * B * A = B ¬ A < B ¬ B < A

Proof

Step Hyp Ref Expression
1 xrltso < Or *
2 sotrieq2 < Or * A * B * A = B ¬ A < B ¬ B < A
3 1 2 mpan A * B * A = B ¬ A < B ¬ B < A