Metamath Proof Explorer


Theorem xrmax1

Description: An extended real is less than or equal to the maximum of it and another. (Contributed by NM, 7-Feb-2007)

Ref Expression
Assertion xrmax1 A * B * A if A B B A

Proof

Step Hyp Ref Expression
1 xrleid A * A A
2 iffalse ¬ A B if A B B A = A
3 2 breq2d ¬ A B A if A B B A A A
4 1 3 syl5ibrcom A * ¬ A B A if A B B A
5 id A B A B
6 iftrue A B if A B B A = B
7 5 6 breqtrrd A B A if A B B A
8 4 7 pm2.61d2 A * A if A B B A
9 8 adantr A * B * A if A B B A