Metamath Proof Explorer


Theorem xrmax2

Description: An extended real is less than or equal to the maximum of it and another. (Contributed by NM, 7-Feb-2007)

Ref Expression
Assertion xrmax2 A * B * B if A B B A

Proof

Step Hyp Ref Expression
1 xrleid B * B B
2 1 ad2antlr A * B * A B B B
3 iftrue A B if A B B A = B
4 3 adantl A * B * A B if A B B A = B
5 2 4 breqtrrd A * B * A B B if A B B A
6 xrletri A * B * A B B A
7 6 orcanai A * B * ¬ A B B A
8 iffalse ¬ A B if A B B A = A
9 8 adantl A * B * ¬ A B if A B B A = A
10 7 9 breqtrrd A * B * ¬ A B B if A B B A
11 5 10 pm2.61dan A * B * B if A B B A