Metamath Proof Explorer


Theorem xrmaxle

Description: Two ways of saying the maximum of two numbers is less than or equal to a third. (Contributed by Mario Carneiro, 18-Jun-2014)

Ref Expression
Assertion xrmaxle A * B * C * if A B B A C A C B C

Proof

Step Hyp Ref Expression
1 xrmax1 A * B * A if A B B A
2 1 3adant3 A * B * C * A if A B B A
3 ifcl B * A * if A B B A *
4 3 ancoms A * B * if A B B A *
5 4 3adant3 A * B * C * if A B B A *
6 xrletr A * if A B B A * C * A if A B B A if A B B A C A C
7 5 6 syld3an2 A * B * C * A if A B B A if A B B A C A C
8 2 7 mpand A * B * C * if A B B A C A C
9 xrmax2 A * B * B if A B B A
10 9 3adant3 A * B * C * B if A B B A
11 simp2 A * B * C * B *
12 simp3 A * B * C * C *
13 xrletr B * if A B B A * C * B if A B B A if A B B A C B C
14 11 5 12 13 syl3anc A * B * C * B if A B B A if A B B A C B C
15 10 14 mpand A * B * C * if A B B A C B C
16 8 15 jcad A * B * C * if A B B A C A C B C
17 breq1 B = if A B B A B C if A B B A C
18 breq1 A = if A B B A A C if A B B A C
19 17 18 ifboth B C A C if A B B A C
20 19 ancoms A C B C if A B B A C
21 16 20 impbid1 A * B * C * if A B B A C A C B C