Metamath Proof Explorer


Theorem xrmaxlt

Description: Two ways of saying the maximum of two extended reals is less than a third. (Contributed by NM, 7-Feb-2007)

Ref Expression
Assertion xrmaxlt A * B * C * if A B B A < C A < C B < C

Proof

Step Hyp Ref Expression
1 xrmax1 A * B * A if A B B A
2 1 3adant3 A * B * C * A if A B B A
3 ifcl B * A * if A B B A *
4 3 ancoms A * B * if A B B A *
5 4 3adant3 A * B * C * if A B B A *
6 xrlelttr A * if A B B A * C * A if A B B A if A B B A < C A < C
7 5 6 syld3an2 A * B * C * A if A B B A if A B B A < C A < C
8 2 7 mpand A * B * C * if A B B A < C A < C
9 xrmax2 A * B * B if A B B A
10 9 3adant3 A * B * C * B if A B B A
11 simp2 A * B * C * B *
12 simp3 A * B * C * C *
13 xrlelttr B * if A B B A * C * B if A B B A if A B B A < C B < C
14 11 5 12 13 syl3anc A * B * C * B if A B B A if A B B A < C B < C
15 10 14 mpand A * B * C * if A B B A < C B < C
16 8 15 jcad A * B * C * if A B B A < C A < C B < C
17 breq1 B = if A B B A B < C if A B B A < C
18 breq1 A = if A B B A A < C if A B B A < C
19 17 18 ifboth B < C A < C if A B B A < C
20 19 ancoms A < C B < C if A B B A < C
21 16 20 impbid1 A * B * C * if A B B A < C A < C B < C