Metamath Proof Explorer


Theorem xrmin1

Description: The minimum of two extended reals is less than or equal to one of them. (Contributed by NM, 7-Feb-2007)

Ref Expression
Assertion xrmin1 A * B * if A B A B A

Proof

Step Hyp Ref Expression
1 iftrue A B if A B A B = A
2 1 adantl A * B * A B if A B A B = A
3 xrleid A * A A
4 3 ad2antrr A * B * A B A A
5 2 4 eqbrtrd A * B * A B if A B A B A
6 iffalse ¬ A B if A B A B = B
7 6 adantl A * B * ¬ A B if A B A B = B
8 xrletri A * B * A B B A
9 8 orcanai A * B * ¬ A B B A
10 7 9 eqbrtrd A * B * ¬ A B if A B A B A
11 5 10 pm2.61dan A * B * if A B A B A