Metamath Proof Explorer


Theorem xrmin2

Description: The minimum of two extended reals is less than or equal to one of them. (Contributed by NM, 7-Feb-2007)

Ref Expression
Assertion xrmin2 A * B * if A B A B B

Proof

Step Hyp Ref Expression
1 xrleid B * B B
2 iffalse ¬ A B if A B A B = B
3 2 breq1d ¬ A B if A B A B B B B
4 1 3 syl5ibrcom B * ¬ A B if A B A B B
5 iftrue A B if A B A B = A
6 id A B A B
7 5 6 eqbrtrd A B if A B A B B
8 4 7 pm2.61d2 B * if A B A B B
9 8 adantl A * B * if A B A B B