Metamath Proof Explorer


Theorem xrmineq

Description: The minimum of two extended reals is equal to the second if the first is bigger. (Contributed by Mario Carneiro, 25-Mar-2015)

Ref Expression
Assertion xrmineq A * B * B A if A B A B = B

Proof

Step Hyp Ref Expression
1 xrletri3 B * A * B = A B A A B
2 1 ancoms A * B * B = A B A A B
3 2 biimpar A * B * B A A B B = A
4 3 anassrs A * B * B A A B B = A
5 4 ifeq1da A * B * B A if A B B B = if A B A B
6 5 3impa A * B * B A if A B B B = if A B A B
7 ifid if A B B B = B
8 6 7 eqtr3di A * B * B A if A B A B = B