Metamath Proof Explorer


Theorem xrnmnfpnf

Description: An extended real that is neither real nor minus infinity, is plus infinity. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Hypotheses xrnmnfpnf.1 φA*
xrnmnfpnf.2 φ¬A
xrnmnfpnf.3 φA−∞
Assertion xrnmnfpnf φA=+∞

Proof

Step Hyp Ref Expression
1 xrnmnfpnf.1 φA*
2 xrnmnfpnf.2 φ¬A
3 xrnmnfpnf.3 φA−∞
4 1 3 jca φA*A−∞
5 xrnemnf A*A−∞AA=+∞
6 4 5 sylib φAA=+∞
7 pm2.53 AA=+∞¬AA=+∞
8 6 2 7 sylc φA=+∞