Metamath Proof Explorer


Theorem xrnpnfmnf

Description: An extended real that is neither real nor plus infinity, is minus infinity. (Contributed by Glauco Siliprandi, 5-Feb-2022)

Ref Expression
Hypotheses xrnpnfmnf.1 φ A *
xrnpnfmnf.2 φ ¬ A
xrnpnfmnf.3 φ A +∞
Assertion xrnpnfmnf φ A = −∞

Proof

Step Hyp Ref Expression
1 xrnpnfmnf.1 φ A *
2 xrnpnfmnf.2 φ ¬ A
3 xrnpnfmnf.3 φ A +∞
4 1 3 jca φ A * A +∞
5 xrnepnf A * A +∞ A A = −∞
6 4 5 sylib φ A A = −∞
7 pm2.53 A A = −∞ ¬ A A = −∞
8 6 2 7 sylc φ A = −∞