Metamath Proof Explorer


Theorem xrralrecnnle

Description: Show that A is less than B by showing that there is no positive bound on the difference. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses xrralrecnnle.n n φ
xrralrecnnle.a φ A *
xrralrecnnle.b φ B
Assertion xrralrecnnle φ A B n A B + 1 n

Proof

Step Hyp Ref Expression
1 xrralrecnnle.n n φ
2 xrralrecnnle.a φ A *
3 xrralrecnnle.b φ B
4 nfv n A B
5 1 4 nfan n φ A B
6 2 ad2antrr φ A B n A *
7 3 adantr φ n B
8 nnrecre n 1 n
9 8 adantl φ n 1 n
10 7 9 readdcld φ n B + 1 n
11 10 rexrd φ n B + 1 n *
12 11 adantlr φ A B n B + 1 n *
13 rexr B B *
14 3 13 syl φ B *
15 14 ad2antrr φ A B n B *
16 simplr φ A B n A B
17 nnrp n n +
18 rpreccl n + 1 n +
19 17 18 syl n 1 n +
20 19 adantl φ n 1 n +
21 7 20 ltaddrpd φ n B < B + 1 n
22 21 adantlr φ A B n B < B + 1 n
23 6 15 12 16 22 xrlelttrd φ A B n A < B + 1 n
24 6 12 23 xrltled φ A B n A B + 1 n
25 24 ex φ A B n A B + 1 n
26 5 25 ralrimi φ A B n A B + 1 n
27 26 ex φ A B n A B + 1 n
28 rpgtrecnn x + n 1 n < x
29 28 adantl φ n A B + 1 n x + n 1 n < x
30 nfra1 n n A B + 1 n
31 1 30 nfan n φ n A B + 1 n
32 nfv n x +
33 31 32 nfan n φ n A B + 1 n x +
34 nfv n A B + x
35 simpll φ n A B + 1 n n φ
36 rspa n A B + 1 n n A B + 1 n
37 36 adantll φ n A B + 1 n n A B + 1 n
38 35 37 jca φ n A B + 1 n n φ A B + 1 n
39 38 adantlr φ n A B + 1 n x + n φ A B + 1 n
40 simplr φ n A B + 1 n x + n x +
41 simpr φ n A B + 1 n x + n n
42 2 ad4antr φ A B + 1 n x + n 1 n < x A *
43 3 adantr φ x + B
44 rpre x + x
45 44 adantl φ x + x
46 43 45 readdcld φ x + B + x
47 46 rexrd φ x + B + x *
48 47 ad5ant13 φ A B + 1 n x + n 1 n < x B + x *
49 11 ad5ant14 φ A B + 1 n x + n 1 n < x B + 1 n *
50 simp-4r φ A B + 1 n x + n 1 n < x A B + 1 n
51 8 ad2antlr φ x + n 1 n < x 1 n
52 45 ad2antrr φ x + n 1 n < x x
53 43 ad2antrr φ x + n 1 n < x B
54 simpr φ x + n 1 n < x 1 n < x
55 51 52 53 54 ltadd2dd φ x + n 1 n < x B + 1 n < B + x
56 55 adantl3r φ A B + 1 n x + n 1 n < x B + 1 n < B + x
57 42 49 48 50 56 xrlelttrd φ A B + 1 n x + n 1 n < x A < B + x
58 42 48 57 xrltled φ A B + 1 n x + n 1 n < x A B + x
59 58 ex φ A B + 1 n x + n 1 n < x A B + x
60 39 40 41 59 syl21anc φ n A B + 1 n x + n 1 n < x A B + x
61 60 ex φ n A B + 1 n x + n 1 n < x A B + x
62 33 34 61 rexlimd φ n A B + 1 n x + n 1 n < x A B + x
63 29 62 mpd φ n A B + 1 n x + A B + x
64 63 ralrimiva φ n A B + 1 n x + A B + x
65 xralrple A * B A B x + A B + x
66 2 3 65 syl2anc φ A B x + A B + x
67 66 adantr φ n A B + 1 n A B x + A B + x
68 64 67 mpbird φ n A B + 1 n A B
69 68 ex φ n A B + 1 n A B
70 27 69 impbid φ A B n A B + 1 n