Database
REAL AND COMPLEX NUMBERS
Order sets
Infinity and the extended real number system (cont.)
xrre
Next ⟩
xrre2
Metamath Proof Explorer
Ascii
Unicode
Theorem
xrre
Description:
A way of proving that an extended real is real.
(Contributed by
NM
, 9-Mar-2006)
Ref
Expression
Assertion
xrre
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
∧
−∞
<
A
∧
A
≤
B
→
A
∈
ℝ
Proof
Step
Hyp
Ref
Expression
1
simprl
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
∧
−∞
<
A
∧
A
≤
B
→
−∞
<
A
2
ltpnf
⊢
B
∈
ℝ
→
B
<
+∞
3
2
adantl
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
→
B
<
+∞
4
rexr
⊢
B
∈
ℝ
→
B
∈
ℝ
*
5
pnfxr
⊢
+∞
∈
ℝ
*
6
xrlelttr
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
+∞
∈
ℝ
*
→
A
≤
B
∧
B
<
+∞
→
A
<
+∞
7
5
6
mp3an3
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
→
A
≤
B
∧
B
<
+∞
→
A
<
+∞
8
4
7
sylan2
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
→
A
≤
B
∧
B
<
+∞
→
A
<
+∞
9
3
8
mpan2d
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
→
A
≤
B
→
A
<
+∞
10
9
imp
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
∧
A
≤
B
→
A
<
+∞
11
10
adantrl
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
∧
−∞
<
A
∧
A
≤
B
→
A
<
+∞
12
xrrebnd
⊢
A
∈
ℝ
*
→
A
∈
ℝ
↔
−∞
<
A
∧
A
<
+∞
13
12
ad2antrr
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
∧
−∞
<
A
∧
A
≤
B
→
A
∈
ℝ
↔
−∞
<
A
∧
A
<
+∞
14
1
11
13
mpbir2and
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
∧
−∞
<
A
∧
A
≤
B
→
A
∈
ℝ