Metamath Proof Explorer


Theorem xrre

Description: A way of proving that an extended real is real. (Contributed by NM, 9-Mar-2006)

Ref Expression
Assertion xrre A * B −∞ < A A B A

Proof

Step Hyp Ref Expression
1 simprl A * B −∞ < A A B −∞ < A
2 ltpnf B B < +∞
3 2 adantl A * B B < +∞
4 rexr B B *
5 pnfxr +∞ *
6 xrlelttr A * B * +∞ * A B B < +∞ A < +∞
7 5 6 mp3an3 A * B * A B B < +∞ A < +∞
8 4 7 sylan2 A * B A B B < +∞ A < +∞
9 3 8 mpan2d A * B A B A < +∞
10 9 imp A * B A B A < +∞
11 10 adantrl A * B −∞ < A A B A < +∞
12 xrrebnd A * A −∞ < A A < +∞
13 12 ad2antrr A * B −∞ < A A B A −∞ < A A < +∞
14 1 11 13 mpbir2and A * B −∞ < A A B A