Metamath Proof Explorer


Theorem xrrege0

Description: A nonnegative extended real that is less than a real bound is real. (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Assertion xrrege0 A * B 0 A A B A

Proof

Step Hyp Ref Expression
1 ge0gtmnf A * 0 A −∞ < A
2 1 ad2ant2r A * B 0 A A B −∞ < A
3 simprr A * B 0 A A B A B
4 2 3 jca A * B 0 A A B −∞ < A A B
5 xrre A * B −∞ < A A B A
6 4 5 syldan A * B 0 A A B A