Metamath Proof Explorer


Theorem xrs10

Description: The zero of the extended real number monoid. (Contributed by Mario Carneiro, 21-Aug-2015)

Ref Expression
Hypothesis xrs1mnd.1 R = 𝑠 * 𝑠 * −∞
Assertion xrs10 0 = 0 R

Proof

Step Hyp Ref Expression
1 xrs1mnd.1 R = 𝑠 * 𝑠 * −∞
2 difss * −∞ *
3 xrsbas * = Base 𝑠 *
4 1 3 ressbas2 * −∞ * * −∞ = Base R
5 2 4 ax-mp * −∞ = Base R
6 eqid 0 R = 0 R
7 xrex * V
8 7 difexi * −∞ V
9 xrsadd + 𝑒 = + 𝑠 *
10 1 9 ressplusg * −∞ V + 𝑒 = + R
11 8 10 ax-mp + 𝑒 = + R
12 0re 0
13 rexr 0 0 *
14 renemnf 0 0 −∞
15 eldifsn 0 * −∞ 0 * 0 −∞
16 13 14 15 sylanbrc 0 0 * −∞
17 12 16 mp1i 0 * −∞
18 eldifi x * −∞ x *
19 18 adantl x * −∞ x *
20 xaddid2 x * 0 + 𝑒 x = x
21 19 20 syl x * −∞ 0 + 𝑒 x = x
22 19 xaddid1d x * −∞ x + 𝑒 0 = x
23 5 6 11 17 21 22 ismgmid2 0 = 0 R
24 23 mptru 0 = 0 R