Metamath Proof Explorer


Theorem xrs1cmn

Description: The extended real numbers restricted to RR* \ { -oo } form a commutative monoid. They are not a group because 1 + +oo = 2 + +oo even though 1 =/= 2 . (Contributed by Mario Carneiro, 27-Nov-2014)

Ref Expression
Hypothesis xrs1mnd.1 R = 𝑠 * 𝑠 * −∞
Assertion xrs1cmn R CMnd

Proof

Step Hyp Ref Expression
1 xrs1mnd.1 R = 𝑠 * 𝑠 * −∞
2 1 xrs1mnd R Mnd
3 eldifi x * −∞ x *
4 eldifi y * −∞ y *
5 xaddcom x * y * x + 𝑒 y = y + 𝑒 x
6 3 4 5 syl2an x * −∞ y * −∞ x + 𝑒 y = y + 𝑒 x
7 6 rgen2 x * −∞ y * −∞ x + 𝑒 y = y + 𝑒 x
8 difss * −∞ *
9 xrsbas * = Base 𝑠 *
10 1 9 ressbas2 * −∞ * * −∞ = Base R
11 8 10 ax-mp * −∞ = Base R
12 xrex * V
13 12 difexi * −∞ V
14 xrsadd + 𝑒 = + 𝑠 *
15 1 14 ressplusg * −∞ V + 𝑒 = + R
16 13 15 ax-mp + 𝑒 = + R
17 11 16 iscmn R CMnd R Mnd x * −∞ y * −∞ x + 𝑒 y = y + 𝑒 x
18 2 7 17 mpbir2an R CMnd