Metamath Proof Explorer


Theorem xrsbas

Description: The base set of the extended real number structure. (Contributed by Mario Carneiro, 21-Aug-2015)

Ref Expression
Assertion xrsbas * = Base 𝑠 *

Proof

Step Hyp Ref Expression
1 xrex * V
2 df-xrs 𝑠 * = Base ndx * + ndx + 𝑒 ndx 𝑒 TopSet ndx ordTop ndx dist ndx x * , y * if x y y + 𝑒 x x + 𝑒 y
3 2 odrngbas * V * = Base 𝑠 *
4 1 3 ax-mp * = Base 𝑠 *