Metamath Proof Explorer


Theorem xrsblre

Description: Any ball of the metric of the extended reals centered on an element of RR is entirely contained in RR . (Contributed by Mario Carneiro, 4-Sep-2015)

Ref Expression
Hypothesis xrsxmet.1 D = dist 𝑠 *
Assertion xrsblre P R * P ball D R

Proof

Step Hyp Ref Expression
1 xrsxmet.1 D = dist 𝑠 *
2 rexr P P *
3 1 xrsxmet D ∞Met *
4 eqid D -1 = D -1
5 4 blssec D ∞Met * P * R * P ball D R P D -1
6 3 5 mp3an1 P * R * P ball D R P D -1
7 2 6 sylan P R * P ball D R P D -1
8 vex x V
9 simpl P R * P
10 elecg x V P x P D -1 P D -1 x
11 8 9 10 sylancr P R * x P D -1 P D -1 x
12 4 xmeterval D ∞Met * P D -1 x P * x * P D x
13 3 12 ax-mp P D -1 x P * x * P D x
14 simpr P R * P * x * P D x P = x P = x
15 simplll P R * P * x * P D x P = x P
16 14 15 eqeltrrd P R * P * x * P D x P = x x
17 simplr3 P R * P * x * P D x P x P D x
18 simplr1 P R * P * x * P D x P x P *
19 simplr2 P R * P * x * P D x P x x *
20 simpr P R * P * x * P D x P x P x
21 1 xrsdsreclb P * x * P x P D x P x
22 18 19 20 21 syl3anc P R * P * x * P D x P x P D x P x
23 17 22 mpbid P R * P * x * P D x P x P x
24 23 simprd P R * P * x * P D x P x x
25 16 24 pm2.61dane P R * P * x * P D x x
26 25 ex P R * P * x * P D x x
27 13 26 syl5bi P R * P D -1 x x
28 11 27 sylbid P R * x P D -1 x
29 28 ssrdv P R * P D -1
30 7 29 sstrd P R * P ball D R