Metamath Proof Explorer


Theorem xrsdsre

Description: The metric on the extended reals coincides with the usual metric on the reals. (Contributed by Mario Carneiro, 4-Sep-2015)

Ref Expression
Hypothesis xrsxmet.1 D = dist 𝑠 *
Assertion xrsdsre D 2 = abs 2

Proof

Step Hyp Ref Expression
1 xrsxmet.1 D = dist 𝑠 *
2 1 xrsdsreval x y x D y = x y
3 ovres x y x D 2 y = x D y
4 eqid abs 2 = abs 2
5 4 remetdval x y x abs 2 y = x y
6 2 3 5 3eqtr4d x y x D 2 y = x abs 2 y
7 6 rgen2 x y x D 2 y = x abs 2 y
8 1 xrsxmet D ∞Met *
9 xmetf D ∞Met * D : * × * *
10 ffn D : * × * * D Fn * × *
11 8 9 10 mp2b D Fn * × *
12 rexpssxrxp 2 * × *
13 fnssres D Fn * × * 2 * × * D 2 Fn 2
14 11 12 13 mp2an D 2 Fn 2
15 cnmet abs Met
16 metf abs Met abs : ×
17 ffn abs : × abs Fn ×
18 15 16 17 mp2b abs Fn ×
19 ax-resscn
20 xpss12 2 ×
21 19 19 20 mp2an 2 ×
22 fnssres abs Fn × 2 × abs 2 Fn 2
23 18 21 22 mp2an abs 2 Fn 2
24 eqfnov2 D 2 Fn 2 abs 2 Fn 2 D 2 = abs 2 x y x D 2 y = x abs 2 y
25 14 23 24 mp2an D 2 = abs 2 x y x D 2 y = x abs 2 y
26 7 25 mpbir D 2 = abs 2