Metamath Proof Explorer


Theorem xrsdsreclb

Description: The metric of the extended real number structure is only real when both arguments are real. (Contributed by Mario Carneiro, 3-Sep-2015)

Ref Expression
Hypothesis xrsds.d D = dist 𝑠 *
Assertion xrsdsreclb A * B * A B A D B A B

Proof

Step Hyp Ref Expression
1 xrsds.d D = dist 𝑠 *
2 1 xrsdsval A * B * A D B = if A B B + 𝑒 A A + 𝑒 B
3 2 3adant3 A * B * A B A D B = if A B B + 𝑒 A A + 𝑒 B
4 3 eleq1d A * B * A B A D B if A B B + 𝑒 A A + 𝑒 B
5 eleq1 B + 𝑒 A = if A B B + 𝑒 A A + 𝑒 B B + 𝑒 A if A B B + 𝑒 A A + 𝑒 B
6 5 imbi1d B + 𝑒 A = if A B B + 𝑒 A A + 𝑒 B B + 𝑒 A A B if A B B + 𝑒 A A + 𝑒 B A B
7 eleq1 A + 𝑒 B = if A B B + 𝑒 A A + 𝑒 B A + 𝑒 B if A B B + 𝑒 A A + 𝑒 B
8 7 imbi1d A + 𝑒 B = if A B B + 𝑒 A A + 𝑒 B A + 𝑒 B A B if A B B + 𝑒 A A + 𝑒 B A B
9 1 xrsdsreclblem A * B * A B A B B + 𝑒 A A B
10 xrletri A * B * A B B A
11 10 3adant3 A * B * A B A B B A
12 11 orcanai A * B * A B ¬ A B B A
13 necom A B B A
14 13 3anbi3i A * B * A B A * B * B A
15 3ancoma A * B * B A B * A * B A
16 14 15 bitri A * B * A B B * A * B A
17 1 xrsdsreclblem B * A * B A B A A + 𝑒 B B A
18 16 17 sylanb A * B * A B B A A + 𝑒 B B A
19 ancom B A A B
20 18 19 syl6ib A * B * A B B A A + 𝑒 B A B
21 12 20 syldan A * B * A B ¬ A B A + 𝑒 B A B
22 6 8 9 21 ifbothda A * B * A B if A B B + 𝑒 A A + 𝑒 B A B
23 4 22 sylbid A * B * A B A D B A B
24 1 xrsdsreval A B A D B = A B
25 recn A A
26 recn B B
27 subcl A B A B
28 25 26 27 syl2an A B A B
29 28 abscld A B A B
30 24 29 eqeltrd A B A D B
31 23 30 impbid1 A * B * A B A D B A B