Metamath Proof Explorer


Theorem xrsex

Description: The extended real structure is a set. (Contributed by Mario Carneiro, 21-Aug-2015)

Ref Expression
Assertion xrsex 𝑠 * V

Proof

Step Hyp Ref Expression
1 df-xrs 𝑠 * = Base ndx * + ndx + 𝑒 ndx 𝑒 TopSet ndx ordTop ndx dist ndx x * , y * if x y y + 𝑒 x x + 𝑒 y
2 tpex Base ndx * + ndx + 𝑒 ndx 𝑒 V
3 tpex TopSet ndx ordTop ndx dist ndx x * , y * if x y y + 𝑒 x x + 𝑒 y V
4 2 3 unex Base ndx * + ndx + 𝑒 ndx 𝑒 TopSet ndx ordTop ndx dist ndx x * , y * if x y y + 𝑒 x x + 𝑒 y V
5 1 4 eqeltri 𝑠 * V