Metamath Proof Explorer


Theorem xrsle

Description: The ordering of the extended real number structure. (Contributed by Mario Carneiro, 21-Aug-2015)

Ref Expression
Assertion xrsle = 𝑠 *

Proof

Step Hyp Ref Expression
1 xrex * V
2 1 1 xpex * × * V
3 lerelxr * × *
4 2 3 ssexi V
5 df-xrs 𝑠 * = Base ndx * + ndx + 𝑒 ndx 𝑒 TopSet ndx ordTop ndx dist ndx x * , y * if x y y + 𝑒 x x + 𝑒 y
6 5 odrngle V = 𝑠 *
7 4 6 ax-mp = 𝑠 *