Metamath Proof Explorer


Theorem xrslt

Description: The "strictly less than" relation for the extended real structure. (Contributed by Thierry Arnoux, 30-Jan-2018)

Ref Expression
Assertion xrslt <=<𝑠*

Proof

Step Hyp Ref Expression
1 dflt2 <=I
2 xrsex 𝑠*V
3 xrsle =𝑠*
4 eqid <𝑠*=<𝑠*
5 3 4 pltfval 𝑠*V<𝑠*=I
6 2 5 ax-mp <𝑠*=I
7 1 6 eqtr4i <=<𝑠*