Metamath Proof Explorer


Theorem xrsmcmn

Description: The "multiplicative group" of the extended reals is a commutative monoid (even though the "additive group" is not a semigroup, see xrsmgmdifsgrp .) (Contributed by Mario Carneiro, 21-Aug-2015)

Ref Expression
Assertion xrsmcmn mulGrp 𝑠 * CMnd

Proof

Step Hyp Ref Expression
1 eqid mulGrp 𝑠 * = mulGrp 𝑠 *
2 xrsbas * = Base 𝑠 *
3 1 2 mgpbas * = Base mulGrp 𝑠 *
4 3 a1i * = Base mulGrp 𝑠 *
5 xrsmul 𝑒 = 𝑠 *
6 1 5 mgpplusg 𝑒 = + mulGrp 𝑠 *
7 6 a1i 𝑒 = + mulGrp 𝑠 *
8 xmulcl x * y * x 𝑒 y *
9 8 3adant1 x * y * x 𝑒 y *
10 xmulass x * y * z * x 𝑒 y 𝑒 z = x 𝑒 y 𝑒 z
11 10 adantl x * y * z * x 𝑒 y 𝑒 z = x 𝑒 y 𝑒 z
12 1re 1
13 rexr 1 1 *
14 12 13 mp1i 1 *
15 xmulid2 x * 1 𝑒 x = x
16 15 adantl x * 1 𝑒 x = x
17 xmulid1 x * x 𝑒 1 = x
18 17 adantl x * x 𝑒 1 = x
19 4 7 9 11 14 16 18 ismndd mulGrp 𝑠 * Mnd
20 xmulcom x * y * x 𝑒 y = y 𝑒 x
21 20 3adant1 x * y * x 𝑒 y = y 𝑒 x
22 4 7 19 21 iscmnd mulGrp 𝑠 * CMnd
23 22 mptru mulGrp 𝑠 * CMnd