Metamath Proof Explorer


Theorem xrsnsgrp

Description: The "additive group" of the extended reals is not a semigroup. (Contributed by AV, 30-Jan-2020)

Ref Expression
Assertion xrsnsgrp 𝑠 * Smgrp

Proof

Step Hyp Ref Expression
1 1xr 1 *
2 mnfxr −∞ *
3 pnfxr +∞ *
4 1 2 3 3pm3.2i 1 * −∞ * +∞ *
5 xaddcom 1 * −∞ * 1 + 𝑒 −∞ = −∞ + 𝑒 1
6 1 2 5 mp2an 1 + 𝑒 −∞ = −∞ + 𝑒 1
7 1re 1
8 renepnf 1 1 +∞
9 7 8 ax-mp 1 +∞
10 xaddmnf2 1 * 1 +∞ −∞ + 𝑒 1 = −∞
11 1 9 10 mp2an −∞ + 𝑒 1 = −∞
12 6 11 eqtri 1 + 𝑒 −∞ = −∞
13 12 oveq1i 1 + 𝑒 −∞ + 𝑒 +∞ = −∞ + 𝑒 +∞
14 mnfaddpnf −∞ + 𝑒 +∞ = 0
15 13 14 eqtri 1 + 𝑒 −∞ + 𝑒 +∞ = 0
16 0ne1 0 1
17 15 16 eqnetri 1 + 𝑒 −∞ + 𝑒 +∞ 1
18 14 oveq2i 1 + 𝑒 −∞ + 𝑒 +∞ = 1 + 𝑒 0
19 xaddrid 1 * 1 + 𝑒 0 = 1
20 1 19 ax-mp 1 + 𝑒 0 = 1
21 18 20 eqtri 1 + 𝑒 −∞ + 𝑒 +∞ = 1
22 17 21 neeqtrri 1 + 𝑒 −∞ + 𝑒 +∞ 1 + 𝑒 −∞ + 𝑒 +∞
23 xrsbas * = Base 𝑠 *
24 xrsadd + 𝑒 = + 𝑠 *
25 23 24 isnsgrp 1 * −∞ * +∞ * 1 + 𝑒 −∞ + 𝑒 +∞ 1 + 𝑒 −∞ + 𝑒 +∞ 𝑠 * Smgrp
26 4 22 25 mp2 𝑠 * Smgrp