Metamath Proof Explorer


Theorem xrssre

Description: A subset of extended reals that does not contain +oo and -oo is a subset of the reals. (Contributed by Glauco Siliprandi, 11-Oct-2020)

Ref Expression
Hypotheses xrssre.1 φ A *
xrssre.2 φ ¬ +∞ A
xrssre.3 φ ¬ −∞ A
Assertion xrssre φ A

Proof

Step Hyp Ref Expression
1 xrssre.1 φ A *
2 xrssre.2 φ ¬ +∞ A
3 xrssre.3 φ ¬ −∞ A
4 ssxr A * A +∞ A −∞ A
5 1 4 syl φ A +∞ A −∞ A
6 3orass A +∞ A −∞ A A +∞ A −∞ A
7 5 6 sylib φ A +∞ A −∞ A
8 7 orcomd φ +∞ A −∞ A A
9 2 3 jca φ ¬ +∞ A ¬ −∞ A
10 ioran ¬ +∞ A −∞ A ¬ +∞ A ¬ −∞ A
11 9 10 sylibr φ ¬ +∞ A −∞ A
12 df-or +∞ A −∞ A A ¬ +∞ A −∞ A A
13 12 biimpi +∞ A −∞ A A ¬ +∞ A −∞ A A
14 8 11 13 sylc φ A