Metamath Proof Explorer


Theorem xrsstr

Description: The extended real structure is a structure. (Contributed by Mario Carneiro, 21-Aug-2015)

Ref Expression
Assertion xrsstr 𝑠 * Struct 1 12

Proof

Step Hyp Ref Expression
1 df-xrs 𝑠 * = Base ndx * + ndx + 𝑒 ndx 𝑒 TopSet ndx ordTop ndx dist ndx x * , y * if x y y + 𝑒 x x + 𝑒 y
2 1 odrngstr 𝑠 * Struct 1 12