Metamath Proof Explorer


Theorem xrstopn

Description: The topology component of the extended real number structure. (Contributed by Mario Carneiro, 21-Aug-2015)

Ref Expression
Assertion xrstopn ordTop = TopOpen 𝑠 *

Proof

Step Hyp Ref Expression
1 letopon ordTop TopOn *
2 xrsbas * = Base 𝑠 *
3 xrstset ordTop = TopSet 𝑠 *
4 2 3 topontopn ordTop TopOn * ordTop = TopOpen 𝑠 *
5 1 4 ax-mp ordTop = TopOpen 𝑠 *