Metamath Proof Explorer


Theorem xrstset

Description: The topology component of the extended real number structure. (Contributed by Mario Carneiro, 21-Aug-2015)

Ref Expression
Assertion xrstset ordTop = TopSet 𝑠 *

Proof

Step Hyp Ref Expression
1 fvex ordTop V
2 df-xrs 𝑠 * = Base ndx * + ndx + 𝑒 ndx 𝑒 TopSet ndx ordTop ndx dist ndx x * , y * if x y y + 𝑒 x x + 𝑒 y
3 2 odrngtset ordTop V ordTop = TopSet 𝑠 *
4 1 3 ax-mp ordTop = TopSet 𝑠 *