Metamath Proof Explorer


Theorem xrsup0

Description: The supremum of an empty set under the extended reals is minus infinity. (Contributed by NM, 15-Oct-2005)

Ref Expression
Assertion xrsup0 sup * < = −∞

Proof

Step Hyp Ref Expression
1 0ss *
2 mnfxr −∞ *
3 ral0 y ¬ −∞ < y
4 rexr y y *
5 nltmnf y * ¬ y < −∞
6 4 5 syl y ¬ y < −∞
7 6 pm2.21d y y < −∞ z y < z
8 7 rgen y y < −∞ z y < z
9 supxr * −∞ * y ¬ −∞ < y y y < −∞ z y < z sup * < = −∞
10 1 2 3 8 9 mp4an sup * < = −∞