Metamath Proof Explorer


Theorem xrtgioo

Description: The topology on the extended reals coincides with the standard topology on the reals, when restricted to RR . (Contributed by Mario Carneiro, 3-Sep-2015)

Ref Expression
Hypothesis xrtgioo.1 J = ordTop 𝑡
Assertion xrtgioo topGen ran . = J

Proof

Step Hyp Ref Expression
1 xrtgioo.1 J = ordTop 𝑡
2 letop ordTop Top
3 ioof . : * × * 𝒫
4 ffn . : * × * 𝒫 . Fn * × *
5 3 4 ax-mp . Fn * × *
6 iooordt x y ordTop
7 6 rgen2w x * y * x y ordTop
8 ffnov . : * × * ordTop . Fn * × * x * y * x y ordTop
9 5 7 8 mpbir2an . : * × * ordTop
10 frn . : * × * ordTop ran . ordTop
11 9 10 ax-mp ran . ordTop
12 tgss ordTop Top ran . ordTop topGen ran . topGen ordTop
13 2 11 12 mp2an topGen ran . topGen ordTop
14 tgtop ordTop Top topGen ordTop = ordTop
15 2 14 ax-mp topGen ordTop = ordTop
16 13 15 sseqtri topGen ran . ordTop
17 16 sseli x topGen ran . x ordTop
18 retopon topGen ran . TopOn
19 toponss topGen ran . TopOn x topGen ran . x
20 18 19 mpan x topGen ran . x
21 reordt ordTop
22 restopn2 ordTop Top ordTop x ordTop 𝑡 x ordTop x
23 2 21 22 mp2an x ordTop 𝑡 x ordTop x
24 17 20 23 sylanbrc x topGen ran . x ordTop 𝑡
25 24 ssriv topGen ran . ordTop 𝑡
26 eqid ran x * x +∞ = ran x * x +∞
27 eqid ran x * −∞ x = ran x * −∞ x
28 eqid ran . = ran .
29 26 27 28 leordtval ordTop = topGen ran x * x +∞ ran x * −∞ x ran .
30 29 oveq1i ordTop 𝑡 = topGen ran x * x +∞ ran x * −∞ x ran . 𝑡
31 29 2 eqeltrri topGen ran x * x +∞ ran x * −∞ x ran . Top
32 tgclb ran x * x +∞ ran x * −∞ x ran . TopBases topGen ran x * x +∞ ran x * −∞ x ran . Top
33 31 32 mpbir ran x * x +∞ ran x * −∞ x ran . TopBases
34 reex V
35 tgrest ran x * x +∞ ran x * −∞ x ran . TopBases V topGen ran x * x +∞ ran x * −∞ x ran . 𝑡 = topGen ran x * x +∞ ran x * −∞ x ran . 𝑡
36 33 34 35 mp2an topGen ran x * x +∞ ran x * −∞ x ran . 𝑡 = topGen ran x * x +∞ ran x * −∞ x ran . 𝑡
37 30 36 eqtr4i ordTop 𝑡 = topGen ran x * x +∞ ran x * −∞ x ran . 𝑡
38 retopbas ran . TopBases
39 elrest ran x * x +∞ ran x * −∞ x ran . TopBases V u ran x * x +∞ ran x * −∞ x ran . 𝑡 v ran x * x +∞ ran x * −∞ x ran . u = v
40 33 34 39 mp2an u ran x * x +∞ ran x * −∞ x ran . 𝑡 v ran x * x +∞ ran x * −∞ x ran . u = v
41 elun v ran x * x +∞ ran x * −∞ x ran . v ran x * x +∞ ran x * −∞ x v ran .
42 elun v ran x * x +∞ ran x * −∞ x v ran x * x +∞ v ran x * −∞ x
43 eqid x * x +∞ = x * x +∞
44 43 elrnmpt v V v ran x * x +∞ x * v = x +∞
45 44 elv v ran x * x +∞ x * v = x +∞
46 simpl x * y x *
47 pnfxr +∞ *
48 47 a1i x * y +∞ *
49 rexr y y *
50 49 adantl x * y y *
51 df-ioc . = a * , b * c * | a < c c b
52 51 elixx3g y x +∞ x * +∞ * y * x < y y +∞
53 52 baib x * +∞ * y * y x +∞ x < y y +∞
54 46 48 50 53 syl3anc x * y y x +∞ x < y y +∞
55 pnfge y * y +∞
56 50 55 syl x * y y +∞
57 56 biantrud x * y x < y x < y y +∞
58 ltpnf y y < +∞
59 58 adantl x * y y < +∞
60 59 biantrud x * y x < y x < y y < +∞
61 54 57 60 3bitr2d x * y y x +∞ x < y y < +∞
62 61 pm5.32da x * y y x +∞ y x < y y < +∞
63 elin y x +∞ y x +∞ y
64 63 biancomi y x +∞ y y x +∞
65 3anass y x < y y < +∞ y x < y y < +∞
66 62 64 65 3bitr4g x * y x +∞ y x < y y < +∞
67 elioo2 x * +∞ * y x +∞ y x < y y < +∞
68 47 67 mpan2 x * y x +∞ y x < y y < +∞
69 66 68 bitr4d x * y x +∞ y x +∞
70 69 eqrdv x * x +∞ = x +∞
71 ioorebas x +∞ ran .
72 70 71 eqeltrdi x * x +∞ ran .
73 ineq1 v = x +∞ v = x +∞
74 73 eleq1d v = x +∞ v ran . x +∞ ran .
75 72 74 syl5ibrcom x * v = x +∞ v ran .
76 75 rexlimiv x * v = x +∞ v ran .
77 45 76 sylbi v ran x * x +∞ v ran .
78 eqid x * −∞ x = x * −∞ x
79 78 elrnmpt v V v ran x * −∞ x x * v = −∞ x
80 79 elv v ran x * −∞ x x * v = −∞ x
81 mnfxr −∞ *
82 81 a1i x * y −∞ *
83 df-ico . = a * , b * c * | a c c < b
84 83 elixx3g y −∞ x −∞ * x * y * −∞ y y < x
85 84 baib −∞ * x * y * y −∞ x −∞ y y < x
86 82 46 50 85 syl3anc x * y y −∞ x −∞ y y < x
87 mnfle y * −∞ y
88 50 87 syl x * y −∞ y
89 88 biantrurd x * y y < x −∞ y y < x
90 mnflt y −∞ < y
91 90 adantl x * y −∞ < y
92 91 biantrurd x * y y < x −∞ < y y < x
93 86 89 92 3bitr2d x * y y −∞ x −∞ < y y < x
94 93 pm5.32da x * y y −∞ x y −∞ < y y < x
95 elin y −∞ x y −∞ x y
96 95 biancomi y −∞ x y y −∞ x
97 3anass y −∞ < y y < x y −∞ < y y < x
98 94 96 97 3bitr4g x * y −∞ x y −∞ < y y < x
99 elioo2 −∞ * x * y −∞ x y −∞ < y y < x
100 81 99 mpan x * y −∞ x y −∞ < y y < x
101 98 100 bitr4d x * y −∞ x y −∞ x
102 101 eqrdv x * −∞ x = −∞ x
103 ioorebas −∞ x ran .
104 102 103 eqeltrdi x * −∞ x ran .
105 ineq1 v = −∞ x v = −∞ x
106 105 eleq1d v = −∞ x v ran . −∞ x ran .
107 104 106 syl5ibrcom x * v = −∞ x v ran .
108 107 rexlimiv x * v = −∞ x v ran .
109 80 108 sylbi v ran x * −∞ x v ran .
110 77 109 jaoi v ran x * x +∞ v ran x * −∞ x v ran .
111 42 110 sylbi v ran x * x +∞ ran x * −∞ x v ran .
112 elssuni v ran . v ran .
113 unirnioo = ran .
114 112 113 sseqtrrdi v ran . v
115 df-ss v v = v
116 114 115 sylib v ran . v = v
117 id v ran . v ran .
118 116 117 eqeltrd v ran . v ran .
119 111 118 jaoi v ran x * x +∞ ran x * −∞ x v ran . v ran .
120 41 119 sylbi v ran x * x +∞ ran x * −∞ x ran . v ran .
121 eleq1 u = v u ran . v ran .
122 120 121 syl5ibrcom v ran x * x +∞ ran x * −∞ x ran . u = v u ran .
123 122 rexlimiv v ran x * x +∞ ran x * −∞ x ran . u = v u ran .
124 40 123 sylbi u ran x * x +∞ ran x * −∞ x ran . 𝑡 u ran .
125 124 ssriv ran x * x +∞ ran x * −∞ x ran . 𝑡 ran .
126 tgss ran . TopBases ran x * x +∞ ran x * −∞ x ran . 𝑡 ran . topGen ran x * x +∞ ran x * −∞ x ran . 𝑡 topGen ran .
127 38 125 126 mp2an topGen ran x * x +∞ ran x * −∞ x ran . 𝑡 topGen ran .
128 37 127 eqsstri ordTop 𝑡 topGen ran .
129 25 128 eqssi topGen ran . = ordTop 𝑡
130 129 1 eqtr4i topGen ran . = J