Metamath Proof Explorer


Theorem z2ge

Description: There exists an integer greater than or equal to any two others. (Contributed by NM, 28-Aug-2005)

Ref Expression
Assertion z2ge M N k M k N k

Proof

Step Hyp Ref Expression
1 ifcl N M if M N N M
2 1 ancoms M N if M N N M
3 zre M M
4 zre N N
5 max1 M N M if M N N M
6 max2 M N N if M N N M
7 5 6 jca M N M if M N N M N if M N N M
8 3 4 7 syl2an M N M if M N N M N if M N N M
9 breq2 k = if M N N M M k M if M N N M
10 breq2 k = if M N N M N k N if M N N M
11 9 10 anbi12d k = if M N N M M k N k M if M N N M N if M N N M
12 11 rspcev if M N N M M if M N N M N if M N N M k M k N k
13 2 8 12 syl2anc M N k M k N k