Metamath Proof Explorer


Theorem zabsle1

Description: { -u 1 , 0 , 1 } is the set of all integers with absolute value at most 1 . (Contributed by AV, 13-Jul-2021)

Ref Expression
Assertion zabsle1 Z Z 1 0 1 Z 1

Proof

Step Hyp Ref Expression
1 eltpi Z 1 0 1 Z = 1 Z = 0 Z = 1
2 fveq2 Z = 1 Z = 1
3 ax-1cn 1
4 3 absnegi 1 = 1
5 abs1 1 = 1
6 4 5 eqtri 1 = 1
7 1le1 1 1
8 6 7 eqbrtri 1 1
9 2 8 eqbrtrdi Z = 1 Z 1
10 fveq2 Z = 0 Z = 0
11 abs0 0 = 0
12 0le1 0 1
13 11 12 eqbrtri 0 1
14 10 13 eqbrtrdi Z = 0 Z 1
15 fveq2 Z = 1 Z = 1
16 5 7 eqbrtri 1 1
17 15 16 eqbrtrdi Z = 1 Z 1
18 9 14 17 3jaoi Z = 1 Z = 0 Z = 1 Z 1
19 1 18 syl Z 1 0 1 Z 1
20 zre Z Z
21 1red Z 1
22 20 21 absled Z Z 1 1 Z Z 1
23 elz Z Z Z = 0 Z Z
24 3mix2 Z = 0 Z = 1 Z = 0 Z = 1
25 24 a1d Z = 0 Z 1 Z Z 1 Z = 1 Z = 0 Z = 1
26 nnle1eq1 Z Z 1 Z = 1
27 26 biimpac Z 1 Z Z = 1
28 27 3mix3d Z 1 Z Z = 1 Z = 0 Z = 1
29 28 ex Z 1 Z Z = 1 Z = 0 Z = 1
30 29 adantl 1 Z Z 1 Z Z = 1 Z = 0 Z = 1
31 30 adantl Z 1 Z Z 1 Z Z = 1 Z = 0 Z = 1
32 31 com12 Z Z 1 Z Z 1 Z = 1 Z = 0 Z = 1
33 elnnz1 Z Z 1 Z
34 1red Z 1
35 lenegcon2 1 Z 1 Z Z 1
36 34 35 mpancom Z 1 Z Z 1
37 neg1rr 1
38 37 a1i Z 1
39 id Z Z
40 38 39 letri3d Z 1 = Z 1 Z Z 1
41 3mix1 Z = 1 Z = 1 Z = 0 Z = 1
42 41 eqcoms 1 = Z Z = 1 Z = 0 Z = 1
43 40 42 syl6bir Z 1 Z Z 1 Z = 1 Z = 0 Z = 1
44 43 com12 1 Z Z 1 Z Z = 1 Z = 0 Z = 1
45 44 ex 1 Z Z 1 Z Z = 1 Z = 0 Z = 1
46 45 adantr 1 Z Z 1 Z 1 Z Z = 1 Z = 0 Z = 1
47 46 com13 Z Z 1 1 Z Z 1 Z = 1 Z = 0 Z = 1
48 36 47 sylbid Z 1 Z 1 Z Z 1 Z = 1 Z = 0 Z = 1
49 48 com12 1 Z Z 1 Z Z 1 Z = 1 Z = 0 Z = 1
50 49 impd 1 Z Z 1 Z Z 1 Z = 1 Z = 0 Z = 1
51 50 adantl Z 1 Z Z 1 Z Z 1 Z = 1 Z = 0 Z = 1
52 33 51 sylbi Z Z 1 Z Z 1 Z = 1 Z = 0 Z = 1
53 25 32 52 3jaoi Z = 0 Z Z Z 1 Z Z 1 Z = 1 Z = 0 Z = 1
54 53 imp Z = 0 Z Z Z 1 Z Z 1 Z = 1 Z = 0 Z = 1
55 eltpg Z Z 1 0 1 Z = 1 Z = 0 Z = 1
56 55 adantr Z 1 Z Z 1 Z 1 0 1 Z = 1 Z = 0 Z = 1
57 56 adantl Z = 0 Z Z Z 1 Z Z 1 Z 1 0 1 Z = 1 Z = 0 Z = 1
58 54 57 mpbird Z = 0 Z Z Z 1 Z Z 1 Z 1 0 1
59 58 exp32 Z = 0 Z Z Z 1 Z Z 1 Z 1 0 1
60 59 impcom Z Z = 0 Z Z 1 Z Z 1 Z 1 0 1
61 23 60 sylbi Z 1 Z Z 1 Z 1 0 1
62 22 61 sylbid Z Z 1 Z 1 0 1
63 19 62 impbid2 Z Z 1 0 1 Z 1