Metamath Proof Explorer


Theorem zaddablx

Description: The integers are an Abelian group under addition. Note: This theorem has hard-coded structure indices for demonstration purposes. It is not intended for general use. Use zsubrg instead. (New usage is discouraged.) (Contributed by NM, 4-Sep-2011)

Ref Expression
Hypothesis zaddablx.g G = 1 2 +
Assertion zaddablx G Abel

Proof

Step Hyp Ref Expression
1 zaddablx.g G = 1 2 +
2 zex V
3 addex + V
4 zaddcl x y x + y
5 zcn x x
6 zcn y y
7 zcn z z
8 addass x y z x + y + z = x + y + z
9 5 6 7 8 syl3an x y z x + y + z = x + y + z
10 0z 0
11 5 addid2d x 0 + x = x
12 znegcl x x
13 zcn x x
14 addcom x x x + x = - x + x
15 5 13 14 syl2an x x x + x = - x + x
16 12 15 mpdan x x + x = - x + x
17 5 negidd x x + x = 0
18 16 17 eqtr3d x - x + x = 0
19 2 3 1 4 9 10 11 12 18 isgrpix G Grp
20 2 3 1 grpbasex = Base G
21 2 3 1 grpplusgx + = + G
22 addcom x y x + y = y + x
23 5 6 22 syl2an x y x + y = y + x
24 19 20 21 23 isabli G Abel