Metamath Proof Explorer


Theorem zcld2

Description: The integers are a closed set in the topology on CC . (Contributed by Mario Carneiro, 17-Feb-2015)

Ref Expression
Hypothesis recld2.1 J = TopOpen fld
Assertion zcld2 Clsd J

Proof

Step Hyp Ref Expression
1 recld2.1 J = TopOpen fld
2 1 recld2 Clsd J
3 1 tgioo2 topGen ran . = J 𝑡
4 3 eqcomi J 𝑡 = topGen ran .
5 4 zcld Clsd J 𝑡
6 restcldr Clsd J Clsd J 𝑡 Clsd J
7 2 5 6 mp2an Clsd J