Metamath Proof Explorer


Theorem zclmncvs

Description: The ring of integers as left module over itself is a subcomplex module, but not a subcomplex vector space. The vector operation is + , and the scalar product is x. . (Contributed by AV, 22-Oct-2021)

Ref Expression
Hypothesis zclmncvs.z Z = ringLMod ring
Assertion zclmncvs Z CMod Z ℂVec

Proof

Step Hyp Ref Expression
1 zclmncvs.z Z = ringLMod ring
2 zringring ring Ring
3 rlmlmod ring Ring ringLMod ring LMod
4 2 3 ax-mp ringLMod ring LMod
5 rlmsca ring Ring ring = Scalar ringLMod ring
6 2 5 ax-mp ring = Scalar ringLMod ring
7 df-zring ring = fld 𝑠
8 6 7 eqtr3i Scalar ringLMod ring = fld 𝑠
9 zsubrg SubRing fld
10 eqid Scalar ringLMod ring = Scalar ringLMod ring
11 10 isclmi ringLMod ring LMod Scalar ringLMod ring = fld 𝑠 SubRing fld ringLMod ring CMod
12 4 8 9 11 mp3an ringLMod ring CMod
13 1 eleq1i Z CMod ringLMod ring CMod
14 12 13 mpbir Z CMod
15 zringndrg ring DivRing
16 15 neli ¬ ring DivRing
17 5 eqcomd ring Ring Scalar ringLMod ring = ring
18 2 17 ax-mp Scalar ringLMod ring = ring
19 18 eleq1i Scalar ringLMod ring DivRing ring DivRing
20 16 19 mtbir ¬ Scalar ringLMod ring DivRing
21 20 intnan ¬ ringLMod ring LMod Scalar ringLMod ring DivRing
22 10 islvec ringLMod ring LVec ringLMod ring LMod Scalar ringLMod ring DivRing
23 21 22 mtbir ¬ ringLMod ring LVec
24 23 olci ¬ ringLMod ring CMod ¬ ringLMod ring LVec
25 df-nel Z ℂVec ¬ Z ℂVec
26 ianor ¬ ringLMod ring CMod ringLMod ring LVec ¬ ringLMod ring CMod ¬ ringLMod ring LVec
27 elin ringLMod ring CMod LVec ringLMod ring CMod ringLMod ring LVec
28 26 27 xchnxbir ¬ ringLMod ring CMod LVec ¬ ringLMod ring CMod ¬ ringLMod ring LVec
29 df-cvs ℂVec = CMod LVec
30 1 29 eleq12i Z ℂVec ringLMod ring CMod LVec
31 28 30 xchnxbir ¬ Z ℂVec ¬ ringLMod ring CMod ¬ ringLMod ring LVec
32 25 31 bitri Z ℂVec ¬ ringLMod ring CMod ¬ ringLMod ring LVec
33 24 32 mpbir Z ℂVec
34 14 33 pm3.2i Z CMod Z ℂVec