Database
REAL AND COMPLEX NUMBERS
Integer sets
Integers (as a subset of complex numbers)
zcnd
Next ⟩
znegcld
Metamath Proof Explorer
Ascii
Unicode
Theorem
zcnd
Description:
An integer is a complex number.
(Contributed by
Mario Carneiro
, 28-May-2016)
Ref
Expression
Hypothesis
zred.1
⊢
φ
→
A
∈
ℤ
Assertion
zcnd
⊢
φ
→
A
∈
ℂ
Proof
Step
Hyp
Ref
Expression
1
zred.1
⊢
φ
→
A
∈
ℤ
2
1
zred
⊢
φ
→
A
∈
ℝ
3
2
recnd
⊢
φ
→
A
∈
ℂ