Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Thierry Arnoux
Real and Complex Numbers
The greatest common divisor operator - misc. additions
zdend
Next ⟩
numdenneg
Metamath Proof Explorer
Ascii
Unicode
Theorem
zdend
Description:
Denominator of an integer.
(Contributed by
Thierry Arnoux
, 4-May-2025)
Ref
Expression
Hypothesis
znumd.1
⊢
φ
→
Z
∈
ℤ
Assertion
zdend
⊢
φ
→
denom
⁡
Z
=
1
Proof
Step
Hyp
Ref
Expression
1
znumd.1
⊢
φ
→
Z
∈
ℤ
2
zq
⊢
Z
∈
ℤ
→
Z
∈
ℚ
3
1
2
syl
⊢
φ
→
Z
∈
ℚ
4
1nn
⊢
1
∈
ℕ
5
4
a1i
⊢
φ
→
1
∈
ℕ
6
gcd1
⊢
Z
∈
ℤ
→
Z
gcd
1
=
1
7
1
6
syl
⊢
φ
→
Z
gcd
1
=
1
8
1
zcnd
⊢
φ
→
Z
∈
ℂ
9
8
div1d
⊢
φ
→
Z
1
=
Z
10
9
eqcomd
⊢
φ
→
Z
=
Z
1
11
qnumdenbi
⊢
Z
∈
ℚ
∧
Z
∈
ℤ
∧
1
∈
ℕ
→
Z
gcd
1
=
1
∧
Z
=
Z
1
↔
numer
⁡
Z
=
Z
∧
denom
⁡
Z
=
1
12
11
biimpa
⊢
Z
∈
ℚ
∧
Z
∈
ℤ
∧
1
∈
ℕ
∧
Z
gcd
1
=
1
∧
Z
=
Z
1
→
numer
⁡
Z
=
Z
∧
denom
⁡
Z
=
1
13
3
1
5
7
10
12
syl32anc
⊢
φ
→
numer
⁡
Z
=
Z
∧
denom
⁡
Z
=
1
14
13
simprd
⊢
φ
→
denom
⁡
Z
=
1