Metamath Proof Explorer


Theorem zdend

Description: Denominator of an integer. (Contributed by Thierry Arnoux, 4-May-2025)

Ref Expression
Hypothesis znumd.1 φ Z
Assertion zdend φ denom Z = 1

Proof

Step Hyp Ref Expression
1 znumd.1 φ Z
2 zq Z Z
3 1 2 syl φ Z
4 1nn 1
5 4 a1i φ 1
6 gcd1 Z Z gcd 1 = 1
7 1 6 syl φ Z gcd 1 = 1
8 1 zcnd φ Z
9 8 div1d φ Z 1 = Z
10 9 eqcomd φ Z = Z 1
11 qnumdenbi Z Z 1 Z gcd 1 = 1 Z = Z 1 numer Z = Z denom Z = 1
12 11 biimpa Z Z 1 Z gcd 1 = 1 Z = Z 1 numer Z = Z denom Z = 1
13 3 1 5 7 10 12 syl32anc φ numer Z = Z denom Z = 1
14 13 simprd φ denom Z = 1