Metamath Proof Explorer


Theorem zdiv

Description: Two ways to express " M divides N . (Contributed by NM, 3-Oct-2008)

Ref Expression
Assertion zdiv M N k M k = N N M

Proof

Step Hyp Ref Expression
1 nnne0 M M 0
2 1 adantr M N M 0
3 nncn M M
4 zcn N N
5 zcn k k
6 divcan3 k M M 0 M k M = k
7 6 3coml M M 0 k M k M = k
8 7 3expa M M 0 k M k M = k
9 5 8 sylan2 M M 0 k M k M = k
10 9 3adantl2 M N M 0 k M k M = k
11 oveq1 M k = N M k M = N M
12 10 11 sylan9req M N M 0 k M k = N k = N M
13 simplr M N M 0 k M k = N k
14 12 13 eqeltrrd M N M 0 k M k = N N M
15 14 rexlimdva2 M N M 0 k M k = N N M
16 divcan2 N M M 0 M N M = N
17 16 3com12 M N M 0 M N M = N
18 oveq2 k = N M M k = M N M
19 18 eqeq1d k = N M M k = N M N M = N
20 19 rspcev N M M N M = N k M k = N
21 20 expcom M N M = N N M k M k = N
22 17 21 syl M N M 0 N M k M k = N
23 15 22 impbid M N M 0 k M k = N N M
24 23 3expia M N M 0 k M k = N N M
25 3 4 24 syl2an M N M 0 k M k = N N M
26 2 25 mpd M N k M k = N N M