Metamath Proof Explorer


Theorem zdivadd

Description: Property of divisibility: if D divides A and B then it divides A + B . (Contributed by NM, 3-Oct-2008)

Ref Expression
Assertion zdivadd D A B A D B D A + B D

Proof

Step Hyp Ref Expression
1 zcn A A
2 zcn B B
3 nncn D D
4 nnne0 D D 0
5 3 4 jca D D D 0
6 divdir A B D D 0 A + B D = A D + B D
7 1 2 5 6 syl3an A B D A + B D = A D + B D
8 7 3comr D A B A + B D = A D + B D
9 8 adantr D A B A D B D A + B D = A D + B D
10 zaddcl A D B D A D + B D
11 10 adantl D A B A D B D A D + B D
12 9 11 eqeltrd D A B A D B D A + B D