Metamath Proof Explorer


Theorem zdivmul

Description: Property of divisibility: if D divides A then it divides B x. A . (Contributed by NM, 3-Oct-2008)

Ref Expression
Assertion zdivmul D A B A D B A D

Proof

Step Hyp Ref Expression
1 zcn B B
2 1 3ad2ant2 A B D B
3 zcn A A
4 3 3ad2ant1 A B D A
5 nncn D D
6 nnne0 D D 0
7 5 6 jca D D D 0
8 7 3ad2ant3 A B D D D 0
9 divass B A D D 0 B A D = B A D
10 2 4 8 9 syl3anc A B D B A D = B A D
11 10 3comr D A B B A D = B A D
12 11 adantr D A B A D B A D = B A D
13 zmulcl B A D B A D
14 13 3ad2antl3 D A B A D B A D
15 12 14 eqeltrd D A B A D B A D