Step |
Hyp |
Ref |
Expression |
1 |
|
elz |
|
2 |
|
oveq1 |
|
3 |
|
2cn |
|
4 |
|
2ne0 |
|
5 |
3 4
|
div0i |
|
6 |
|
0z |
|
7 |
5 6
|
eqeltri |
|
8 |
2 7
|
eqeltrdi |
|
9 |
8
|
pm2.24d |
|
10 |
9
|
adantl |
|
11 |
|
nnz |
|
12 |
11
|
con3i |
|
13 |
|
nneo |
|
14 |
13
|
biimprd |
|
15 |
14
|
con1d |
|
16 |
|
nnz |
|
17 |
12 15 16
|
syl56 |
|
18 |
17
|
adantl |
|
19 |
|
recn |
|
20 |
|
divneg |
|
21 |
3 4 20
|
mp3an23 |
|
22 |
19 21
|
syl |
|
23 |
22
|
eleq1d |
|
24 |
|
nnnegz |
|
25 |
23 24
|
syl6bir |
|
26 |
19
|
halfcld |
|
27 |
26
|
negnegd |
|
28 |
27
|
eleq1d |
|
29 |
25 28
|
sylibd |
|
30 |
29
|
adantr |
|
31 |
30
|
con3d |
|
32 |
|
nneo |
|
33 |
32
|
biimprd |
|
34 |
33
|
con1d |
|
35 |
|
nnz |
|
36 |
|
peano2zm |
|
37 |
|
ax-1cn |
|
38 |
37 3
|
negsubdi2i |
|
39 |
|
2m1e1 |
|
40 |
38 39
|
eqtr2i |
|
41 |
37 3
|
subcli |
|
42 |
37 41
|
negcon2i |
|
43 |
40 42
|
mpbi |
|
44 |
43
|
oveq2i |
|
45 |
|
negcl |
|
46 |
|
addsubass |
|
47 |
37 3 46
|
mp3an23 |
|
48 |
45 47
|
syl |
|
49 |
|
negdi |
|
50 |
37 49
|
mpan2 |
|
51 |
44 48 50
|
3eqtr4a |
|
52 |
51
|
oveq1d |
|
53 |
|
2div2e1 |
|
54 |
53
|
eqcomi |
|
55 |
54
|
oveq2i |
|
56 |
|
peano2cn |
|
57 |
45 56
|
syl |
|
58 |
|
2cnne0 |
|
59 |
|
divsubdir |
|
60 |
3 58 59
|
mp3an23 |
|
61 |
57 60
|
syl |
|
62 |
55 61
|
eqtr4id |
|
63 |
|
peano2cn |
|
64 |
|
divneg |
|
65 |
3 4 64
|
mp3an23 |
|
66 |
63 65
|
syl |
|
67 |
52 62 66
|
3eqtr4d |
|
68 |
19 67
|
syl |
|
69 |
68
|
eleq1d |
|
70 |
36 69
|
syl5ib |
|
71 |
|
znegcl |
|
72 |
70 71
|
syl6 |
|
73 |
|
peano2re |
|
74 |
73
|
recnd |
|
75 |
74
|
halfcld |
|
76 |
75
|
negnegd |
|
77 |
76
|
eleq1d |
|
78 |
72 77
|
sylibd |
|
79 |
35 78
|
syl5 |
|
80 |
34 79
|
sylan9r |
|
81 |
31 80
|
syld |
|
82 |
10 18 81
|
3jaodan |
|
83 |
1 82
|
sylbi |
|
84 |
83
|
orrd |
|