| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elz |
|
| 2 |
|
oveq1 |
|
| 3 |
|
2cn |
|
| 4 |
|
2ne0 |
|
| 5 |
3 4
|
div0i |
|
| 6 |
|
0z |
|
| 7 |
5 6
|
eqeltri |
|
| 8 |
2 7
|
eqeltrdi |
|
| 9 |
8
|
pm2.24d |
|
| 10 |
9
|
adantl |
|
| 11 |
|
nnz |
|
| 12 |
11
|
con3i |
|
| 13 |
|
nneo |
|
| 14 |
13
|
biimprd |
|
| 15 |
14
|
con1d |
|
| 16 |
|
nnz |
|
| 17 |
12 15 16
|
syl56 |
|
| 18 |
17
|
adantl |
|
| 19 |
|
recn |
|
| 20 |
|
divneg |
|
| 21 |
3 4 20
|
mp3an23 |
|
| 22 |
19 21
|
syl |
|
| 23 |
22
|
eleq1d |
|
| 24 |
|
nnnegz |
|
| 25 |
23 24
|
biimtrrdi |
|
| 26 |
19
|
halfcld |
|
| 27 |
26
|
negnegd |
|
| 28 |
27
|
eleq1d |
|
| 29 |
25 28
|
sylibd |
|
| 30 |
29
|
adantr |
|
| 31 |
30
|
con3d |
|
| 32 |
|
nneo |
|
| 33 |
32
|
biimprd |
|
| 34 |
33
|
con1d |
|
| 35 |
|
nnz |
|
| 36 |
|
peano2zm |
|
| 37 |
|
ax-1cn |
|
| 38 |
37 3
|
negsubdi2i |
|
| 39 |
|
2m1e1 |
|
| 40 |
38 39
|
eqtr2i |
|
| 41 |
37 3
|
subcli |
|
| 42 |
37 41
|
negcon2i |
|
| 43 |
40 42
|
mpbi |
|
| 44 |
43
|
oveq2i |
|
| 45 |
|
negcl |
|
| 46 |
|
addsubass |
|
| 47 |
37 3 46
|
mp3an23 |
|
| 48 |
45 47
|
syl |
|
| 49 |
|
negdi |
|
| 50 |
37 49
|
mpan2 |
|
| 51 |
44 48 50
|
3eqtr4a |
|
| 52 |
51
|
oveq1d |
|
| 53 |
|
2div2e1 |
|
| 54 |
53
|
eqcomi |
|
| 55 |
54
|
oveq2i |
|
| 56 |
|
peano2cn |
|
| 57 |
45 56
|
syl |
|
| 58 |
|
2cnne0 |
|
| 59 |
|
divsubdir |
|
| 60 |
3 58 59
|
mp3an23 |
|
| 61 |
57 60
|
syl |
|
| 62 |
55 61
|
eqtr4id |
|
| 63 |
|
peano2cn |
|
| 64 |
|
divneg |
|
| 65 |
3 4 64
|
mp3an23 |
|
| 66 |
63 65
|
syl |
|
| 67 |
52 62 66
|
3eqtr4d |
|
| 68 |
19 67
|
syl |
|
| 69 |
68
|
eleq1d |
|
| 70 |
36 69
|
imbitrid |
|
| 71 |
|
znegcl |
|
| 72 |
70 71
|
syl6 |
|
| 73 |
|
peano2re |
|
| 74 |
73
|
recnd |
|
| 75 |
74
|
halfcld |
|
| 76 |
75
|
negnegd |
|
| 77 |
76
|
eleq1d |
|
| 78 |
72 77
|
sylibd |
|
| 79 |
35 78
|
syl5 |
|
| 80 |
34 79
|
sylan9r |
|
| 81 |
31 80
|
syld |
|
| 82 |
10 18 81
|
3jaodan |
|
| 83 |
1 82
|
sylbi |
|
| 84 |
83
|
orrd |
|