Database
REAL AND COMPLEX NUMBERS
Integer sets
Integers (as a subset of complex numbers)
zeo2
Next ⟩
peano2uz2
Metamath Proof Explorer
Ascii
Unicode
Theorem
zeo2
Description:
An integer is even or odd but not both.
(Contributed by
Mario Carneiro
, 12-Sep-2015)
Ref
Expression
Assertion
zeo2
⊢
N
∈
ℤ
→
N
2
∈
ℤ
↔
¬
N
+
1
2
∈
ℤ
Proof
Step
Hyp
Ref
Expression
1
zcn
⊢
N
∈
ℤ
→
N
∈
ℂ
2
peano2cn
⊢
N
∈
ℂ
→
N
+
1
∈
ℂ
3
1
2
syl
⊢
N
∈
ℤ
→
N
+
1
∈
ℂ
4
2cnd
⊢
N
∈
ℤ
→
2
∈
ℂ
5
2ne0
⊢
2
≠
0
6
5
a1i
⊢
N
∈
ℤ
→
2
≠
0
7
3
4
6
divcan2d
⊢
N
∈
ℤ
→
2
⁢
N
+
1
2
=
N
+
1
8
1
4
6
divcan2d
⊢
N
∈
ℤ
→
2
⁢
N
2
=
N
9
8
oveq1d
⊢
N
∈
ℤ
→
2
⁢
N
2
+
1
=
N
+
1
10
7
9
eqtr4d
⊢
N
∈
ℤ
→
2
⁢
N
+
1
2
=
2
⁢
N
2
+
1
11
zneo
⊢
N
+
1
2
∈
ℤ
∧
N
2
∈
ℤ
→
2
⁢
N
+
1
2
≠
2
⁢
N
2
+
1
12
11
expcom
⊢
N
2
∈
ℤ
→
N
+
1
2
∈
ℤ
→
2
⁢
N
+
1
2
≠
2
⁢
N
2
+
1
13
12
necon2bd
⊢
N
2
∈
ℤ
→
2
⁢
N
+
1
2
=
2
⁢
N
2
+
1
→
¬
N
+
1
2
∈
ℤ
14
10
13
syl5com
⊢
N
∈
ℤ
→
N
2
∈
ℤ
→
¬
N
+
1
2
∈
ℤ
15
zeo
⊢
N
∈
ℤ
→
N
2
∈
ℤ
∨
N
+
1
2
∈
ℤ
16
15
ord
⊢
N
∈
ℤ
→
¬
N
2
∈
ℤ
→
N
+
1
2
∈
ℤ
17
16
con1d
⊢
N
∈
ℤ
→
¬
N
+
1
2
∈
ℤ
→
N
2
∈
ℤ
18
14
17
impbid
⊢
N
∈
ℤ
→
N
2
∈
ℤ
↔
¬
N
+
1
2
∈
ℤ